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Abstract—This paper presents a general nonlinear theory of elastic shells for large deflections
and finite strains in reference to a certain natural state. By expanding the displacement com-
ponents into power series in the coordinate 8> normal to the undeformed middle surface of
shells, the expansions of the Cauchy-Green strain tensors are expressed in terms of these
expanded displacement components. Through the modified Hellinger-Reissner variational
principle for a three-dimensional elastic continuum, a set of the fundamental shell equations is
derived in terms of the expanded Cauchy-Green strain tensors and Kirchhoff stress resultants.
The Love-Kirchhoff hypothesis is not assumed and higher order stretching and bending are
taken into consideration. For elastic shells of isotropic materials, assuming the strain-energy
to be an analytic function of the strain measures, general nonlinear constitutive equations are
then derived. Thus, a complete and consistent two-dimensional shell theory incorporating the
geometrical and physical nonlinearities is established. The classical theories of shells are directly
derivable from the present results by proper truncations of the series.

1. INTRODUCTION

Although a number of significant contributions have been made in the literature, a complete
nonlinear theory of shells, which enables one to describe the large elastic deformations of
shells undergoing finite strains, is not presently available. A fully consistent two-dimensional
nonlinear theory of shells incorporating the geometrical and physical nonlinearities is
derived here from the three-dimensional theory of elasticity.

In the two-dimensional theory of shells, a great number of investigations have been devel-
oped on the basis of the well-known Love-Kirchhoff hypothesis. Under the assumption of
small strains and small displacements, Naghdi[l, 2] has developed a systematic derivation
of the fundamental equations in the linear shell theory. There still remains, however, some
theoretical problems to be solved, especially so far as shells undergoing large deflections
and/or finite strains are concerned. For thin elastic shells undergoing large deflections but
small strains, several theories for the geometrically nonlinear problems have been developed.
By introducing the Euler stress resultant tensors and the bending strain tensor defined by
the difference of the second fundamental tensors of the middle surface in the deformed
and undeformed states, Sanders [3] has developed a nonlinear thin shell theory and shown
that the existing theories can be derived under various approximations. The equations of
equilibrium have been written in the directions of the base vectors of the undeformed middle
surface, but an approximation has been made for the relation between the transverse shear
and bending moment resultants. Koiter[4] has also derived similar results under the assump-
tions of small strains and plane state of stresses. However, in these investigations, since the
definitions of stress resultant tensors and also of bending strain tensor have been left
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uncertain from the viewpoint of the three-dimensional theory of elasticity due to the assump-
tion of small strains and the constitutive equations have not been examined, it seems that
there exists a certain inconsistency in the order of approximations among the strain—displace-
ment relations, the equations of equilibrium, the boundary conditions and the simplest
linear constitutive equations. A consistent approximation of the fundamental shell equa-
tions, therefore, seems to be established only if an appropriate set of the constitutive
equations are incorporated simultaneously. In [3, 4], the fundamental equations have
been expressed with respect to the undeformed state, but the Euler stress resultants and the
Cauchy-Green strain tensors which do not correspond exactly from the viewpoint of elastic
energy have been made use of due to the assumption of small strains. On the other hand,
with the use of the Lagrange stress tensors, Glockner[5] has derived nonlinear equations
of equilibrium in reference to the known undeformed state under the Love-Kirchhoff
hypothesis. Practical applications of these equations may be limited, because the Lagrange
stress tensors are not symmetric. Under these circumstances it is considered indispensable
to make use of clearly defined stress and strain tensors and to derive a consistent set of
fundamental equations from the viewpoint of elastic energy particularly in the general
shell theory for large deflections and finite strains.

An actual shell body is always three-dimensional and therefore any two-dimensional theory
of shells is necessarily of an approximate character. In order to estimate the order of approxi-
mations and to define strains and stress resultants clearly which are introduced in any two-
dimensional theory of shells, it seems necessary to derive a shell theory from the three-dimen-
sional theory of elasticity. In the linear theory, Koiter[6] has presented a definition of the
stress resultant tensors in his ealier work[4] in terms of the stress tensors and developed a
modified Love-Kirchhoff theory by taking into account the effect of normal strain y,;.
An error estimate of this theory as an approximation to the actual three-dimensional
solution has been derived.

In view of the two-dimensional character of a shell body, it has been natural to consider
an expansion of the three-dimensional equations of the elasticity theory with respect to some
small parameter related, for instance, to the thickness curvature ratio. Within the scope
of the linear shell theory, Rutten[7] has derived two-dimensional interior shell equations by
expanding the components of displacements, stresses and strains into uniformly convergent
Taylor series in the coordinate variable 0° normal to the middle surface, and derived also
the edge-zone equations to analyse the “‘excess’ state in the edge-zone of a shell. For
geometrically nonlinear problems, a set of nonlinear shell equations which incorporates the
linear constitutive equations for anisotropic materials has been derived by Habip[§],
who has clearly introduced the Kirchhoff stress tensors and the Cauchy-Green strain
tensors in the reference state. A theory of thick elastic shells obeying the linear constitutive
equations has been developed by Martinez-Marquez[9] using power series expansions.
In his analysis the Eulerian expressions have been adopted. For thin elastic shells of iso-
tropic homogeneous materials, a set of the fundamental equations in terms of the Cauchy-
Green strain tensors and the Kirchhoff stress tensors has been proposed by Sumino[10]
under the Love-Kirchhoff hypothesis. An expression of the displacement vector in the
nonlinear shell theory under this hypothesis has been assumed and, accordingly, the
quadratic terms of the displacement components have been taken into account while their
cubic and higher order terms have been neglected. Using thermodynamic considerations,
the fundamental equations of thick shells of arbitrary materials and for large deflections
have been derived by Krizig[11] through the variational principle in the Eulerian descrip-
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tion. It is apparent from these investigations that the most important merit of the three-
dimensional approach is that the Love—Kirchhoff hypothesis will no longer be necessary
and that an “exact” shell theory can be derived.

In the most general form of the shell theory for large deflections and finite strains, a
nonlinear stress-strain relation must necessarily be introduced into the set of fundamental
equations. A number of investigations for general constitutive equations of the three-
dimensional elastic body have been published[12-15]. In shell theories, corresponding to
the assumption of small strains and small curvature, the simplest linear constitutive equa-
tions have always been introduced into geometrically nonlinear problems{3, 4]. Within
the assumption of smalil displacements, nonlinear constitutive equations have been derived
by Wainwright[16] under the Love-Kirchhofl hypothesis and also by Librescu{17] without
this hypothesis. In these two papers, applicabilities of the constitutive equations will be
limited to incompressible materials in which the strain energy function X is expressed as a
function of two strain invariants [, and /,. For shells of incompressible materials under-
going large elastic deformations, a theory which admits a prescribed thickness change has
been given by Biricikoglu and Kalnins{18]. This derivation has been made in terms of the
Cauchy-Green strain tensors with the Euler stress resultants and the equations of equi-
librium have been written in reference to the directions of the tangents and normal to the
deformed middle surface.

Although the Love-Kirchhoff hypothesis is an effective and powerful assumption to
express the deformed states of plates and shells, quantitative examinations of this hypoth-
esis have not been published to date. It is true that an elimination of this hypothesis
results in the complexity of the governing equations. Within the assumption of small dis-
placements, Librescu[l17] has derived a physically nonlinear theory without the Love-
Kirchhoff hypothesis. This result indicates that it will be an effective technique to expand
the displacement components into power series in #° even in the geometrically nonlinear
problems under consideration.

In the present paper, a set of fundamental equations is clearly derived in reference to a
known undeformed state (which is considered to be convenient from the viewpoint of
practical applications) in terms of the Cauchy-Green strain tensors and the Kirchhoff stress
tensors. Through the modified Hellinger-Reissner variational principle of the 3-dimensional
elastic body in reference to a natural state, a set of fundamental equations in geometrically
nonlinear problems is derived without the Love-Kirchhoff hypothesis by expanding the
displacement components into power series in 6% and by including terms representing the
higher order stretching and bending. In this respect, the present result may be regarded as
the Lagrangian formulation corresponding to those in [9, 11], and a generaljzation of the
result in [8] which is based on the assumption that the displacement components are lin-
early varied through the shell thickness and in [10] which is based on the Love-Kirchhoff
hypothesis. The general nonlinear constitutive equations for isotropic elastic materials are
also expanded into power series with respect to the strain tensors and the mixed second
fundamental tensor of the undeformed middle surface. This result may be regarded as a
generalization of that obtained by Librescu{17] in which incompressible materials only
are considered. A difference to choose the Euler or Kirchhoff stress tensor will have an
influence upon this respect, but the difference diminishes in the linear constitutive equations.

By introducing various approximations with respect to geometrical configurations and
deformations of shells and/or material responses, some known approximate theories can
be derived from the present results. Throughout the paper, the usual summation convention
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is used. Repeated Latin indices represent summation over the range (1, 2, 3) and repeated
Greek indices, over the range (1, 2).

2. PRELIMINARIES FOR SHELLS IN A NATURAL STATE

A shell is defined as a three-dimensional elastic body of volume ¥V, bounded by the upper
(S*) and lower (S7) surfaces which are equidistant from the middle surface S and by a
lateral surface S which is generated by the normal to S along the bounding curve ¢. The
distance t between S™ and S” is called the thickness of the shell. It is assumed that the
two external bounding surfaces and the middle surface are continuous and sufficiently
smooth, without singularities.

The position of a point on the middle surface of a shell in a natural state may be specified
by a set of curvilinear normal coordinates ¢° (i = 1, 2, 3), with 8% =0 on S. The spacial
position vector may be written in the form:

R0, 0%, 0°)y = M0, 0%) + 6a,(6', 0), @1

where A(6', %) denotes the position vector of an arbitrary point on the middle surface and
a,(0", 6%), the unit vector normal to the middle surface. The base vector on the middle
surface is given by

(@=1,2) 2.2

and the metric tensors by
aaﬂ = &a ° aﬁ’ a“‘am = 67} s &a == a“’l@l, (23)

where d5 is the Kronecker symbol. The spacial base vectors and components of the metric
tensors are

g\a Zﬂ:ala gAm :(ﬂ_l)iais

gaﬂ :gAa ' gAﬂ = yﬁu}ah, gaﬂ =g~a : gAﬁ = (#_l)ﬁ(ﬂ_l)ea“,
§3:é3363:a\3’ 933:""933:033:033:13
=0,

(2.4)

423 __ %3
Gu3 =g =a,3=4a

where uj denotes a shifter tensor[1] and is expressed as
=5 -0, peu Y= 23)

The mixed components of the second fundamental tensor of the middle surface, b5 is
defined by

b;:bﬂlaal, baﬂ= _d3,1'&3:a3'aa’ﬂ. (2.6)

The element of volume, in terms of normal curvilinear coordinates defined for the
middle surface S, is given by

dV =pde’ds, dS=./ado'de?
~ 2.7
p= det(uf) = \/g = 1—20°H + (0°)’K,
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where
H=1b:, K=15%bib;, g=det(gy), a=det(a,) (2.8)

H and KX denote, respectively, the mean and Gaussian curvatures and dS is the element
of area on the middle surface. Along the edge boundary, the element of area dS and the
corresponding unit normal », are related as[l]

n, dS = v, 1 d6° dc, 2.9)

where v, are components of the outward unit vector normal to the bounding curve ¢, de
being the line element along this curve.

3. STRAIN-DISPLACEMENT RELATIONS

The displacement vector § may be expressed in reference to the spacial base vectors as
b =vig, = 0,4 3.1

The Cauchy-Green strain tensor in terms of the displacement components is defined by
1l TR TR v"“v&,j), 3.2)

where a single vertical line denotes covariant differentiation with respect to 6° using the
spacial metric tensors g;;, g”. In the alternative forms, the displacement vector may be
referred to the surface base vectors as

b= %0, 6%, 8%)a, + 030", 6%, 0°)a,
= 5{:(01, 92, 63)aa + 53(91, 62, 93)&3. (33)

The shifted components 7, and 7, of the displacement vector can be expressed in power
series expansion by

o {n) o (1)
n= 500y 5= e, (34)

n=0

and similarly the strain components by
w© (n) 3 o (B) 3 o (n) 3
Yap = _ZOYap(H Y Y= Zo?as(g Vs Va3 = Zo%s(e )" (3.5)

Introducing the following relations between space and surface tensors[1],

A - -

Ul g = ﬂa(vum - bap 73), U3 = #i Vi3,

o5 = (U305 — b D3), v =505, (3.6)
- )' . - - .

U3Ia = US,a + ba U v3}rx = 03.1 + baAvA5

3 = =3 = =3
Usj3 =0Ty = U333 = V73 =V3 3 =V 3,

components of the Cauchy~Green strain tensors can be derived from equations (3.2), (3.4),
(3.5) and (3.6) as follows:

1SS Vol. 10 No. 21
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(n) 1 ((n) (n) (n) ) [ l((n ~1) (n_l)) A((nﬁl) -y

Vg =3 [ Uajip + Upjja — 2bap U3) — \bg\ Dayp — bap U3 ) + b\ Byyp — bay D3 )}
L] {((’") (m)) ((8 m} {n— m}) ((’f) ;‘("_{) ((n—_m} (n:m)
Z e — bz U3 Do —bag U3 )+ 05+ 0 ”a) U35 +b; D, )” ,

(n) 1 (n+1) (n) (n) }.(")
Va3 = 5 [(n + 1) {)a - nb; ﬁl + ( 53,a + ba ﬁi) (37)

a+i ((n m+1) A(n“m+1) {m) {n—~m+1) A{n—m«kl} {m)}
Z { e —b; 03 )UA'*'( b3, +b; U, )”3”

(n) (n+1) n+1 (n~m+2)(m) (n~m+2)(m)

'))33——— [2(H+ 1) U3 + Z m(n-—-m+2)( l—JA ﬁi.+ 53 53)},
m=0

where a double vertical line denotes covariant differentiation with respect to 6 using the

surface metric tensors a,z, a* and a comma, partial differentiation with respect to 6°. In

the above derivation, the following relation[1] has been used:

() = :io(b");(es)", (3.8)
where
(BO) =85, (BOE=bS, -, (b7 =A™ = B3 (3.9)

Equations (3.7) are considered to be general expressions of the nonlinear strain—displace-
ment relations in the three-dimensional shell body corresponding to the expressions of shifted
displacement components (3.4) and the strain components (3.5). The linearized expressions
of equations (3.7) coincide with the results in {17] and these expressions reduce to the results
in [8] by puttingn, m =0, 1.

4. FUNDAMENTAL EQUATIONS DERIVED FROM VARIATIONAL PRINCIPLE

Introducing the Kirchhoff stress tensor s¥ (which is symmetric, i.e. s = s'*) which does
work on the Cauchy-Green strain tensor y;; and the displacement component v;, the
modified Hellinger—Reissner variational principle for the three-dimensional elastic body in
terms of a natural state may be expressed asf19, 20]

oJ =0,

J = fv [—55yy + 20 + 3550y + v+ v ) — blo ] dV CR))

- j sy, dS — j si(v; — v¥) dS — f sio, dS,
Ss St+8-
where dV denotes the volume element; Z(y;;), the strain energy function; dS, the element
of area of the external bounding surface; s% , the prescribed components of the stress vector
on the part Ss, S* and §7; ¢, the prescribed displacements on the part Sy of the
lateral bounding surface of the body. The surface traction s’ is given by s' = s**(8; + vi)n;,
where n; denote the components of the outward unit vector normal to the external bounding
surface of the body and b are the components of the body force.
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Using the formulae (2.7), and (2.9), and equations (3.4)—(3.6), the terms except the second
in equation (4.1) may be written as follows:

.. w  ((n) (n) 0y (n) (n) (n)
[sgav=[ 5 (W05, 4205 + T 1s) as. 42
fv 358wy + vy + Va0 ) AV
o (")wﬁ ((n) (n) {n+ 1)13( ; (n) 4 (n) ) (n—1) (t:) 4 (n)a (r:)
:fs ¥ [%N Gap + ¢ﬂa) ~ 3 N\b; gy + b5 o3} +1 Q° 8, —nb; Q" 0,
n=0
ny (m (n— 1)(2) © { (n+mg ((n)l (m) {n} (m))
Yt T oot 313 NG dus + Vil

(ntm=1) (n)‘1 (m) (n) (m) (n+m—2) 7(n) (m) (n} (m)
+m QO ((i) e U2+ U, 53) +imm T (ﬁ‘ U, + U 53)}] ds, 4.3)

[ bioav = $ (55 4+ %) as, (4.4)
v S n=0

fsssivi ds = Ls "20 (525 + 2 5,) de, (4.5)
js S0~ o) 45 = | i (5(5 = B) + (5 = B e, 4.6)

sivds=[ % (p o+ p° 5 ds, @4.7)
[, s [ 3 (59T
L S n=0

where de is the line element along the boundary curve ¢, and where ¢s denotes the part of ¢
for which the stress vector is prescribed and cv, the part of ¢ for which the displacement
vector is prescribed. In these expressions, the stress resultant tensors and other quantities
are defined as follows:
¢/2 (n) 12
No = [ us@dyde’, 0 =[ w0 de,
- t/2

~1/2

{n} 2
T= us*3(6%)" de>, 4.8)
~1{2
) 2 (n) /2
5% = f Wl sHO¥y de3, S = f s (0% de?, (4.9)
—-t/2 -2
(n) t/2 (n) t/2
B = j i BHO%)" do®, B = j ub3 (6% do3, (4.10)
- t]2 ~tf2
(")a x JArn3zn 42 (n}3 3,03\ 1z
= mwsser]” P lwer]” @
-t]2 —-t/2

(n) (n) (m (n) (n) (n) (m (n) )
¢rzﬁ= 51[[[1— ap 53, ¢a.lg == 5anp—b§ 53, l[/u= 53,1+b: 17}_, (412)
(n) {n)
where p* and p® correspond to the resultant loads measured per unit area of the middle
surface in a natural state.
Introducing the expressions (4.3)—«(4.7) into the variational equation (4.1), the funda-
mental equations can be derived:
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the equations of equilibrium,

(g} (n) {n+ 1) {n—1) f {n+m){m)
Uai(N“ﬁ Y N“)ua—” 0" +(n— D} Ql Z \( N“(ﬁ".;)na
(ntm) (m) (n+m—1)(m) ("4”"“1)("')’"—
—b N*y,—n O ¢, +m QAHA ¥
(n+m—1) (m) (n+m—2)(m) (n) (n)
+m Q' ¢, —mm T '}+Bﬂ+pﬂ=(),
(n) (1)) -1 ® (n+m) (m) (4.13)
5531[)“( bﬁ Na}v)‘f“Q”,z—f’I T +ZO{bA Nﬂﬁd)Aﬂ
m
{(n+m}(m) {(n+tm—1)(m) {(n+m—1){m) {nt+m=-— 1) {(m}
R R S A T A
(n+m—2}(m) {m {n}

—mm T 5+ B+ p*=0;

the boundary conditions along the boundary curve,

(n) ((n) (n+1) w [(ntm) (m) (n+m—1) (m)
5 or 1, [(N«ﬂ-bg N4 4 ) ("N om0 v)]
me=o

(4.14)
(n) (n} o f(n+tm) (m) (n+m— 1) (m)
i, or v,,[Q”—!—Z(N“/’l/J +m QF v)];
m=0
the constitutive equations in terms of the stress components,
) az 0z
P (4.15)
aygt? &Ya3 0Ya3

and the strain-displacement relations which coincide with the former result (3.7). The
constitutive equations between the Kirchhoff stress resultants and the Cauchy-Green
strain tensors here were left in the unexpanded forms and discussed in detail in the follow-
ing section.

The load terms which consist of the boundary terms on the upper and lower surfaces
are also obtained from (4.11) as follows:

(m) {m 12
o= {uuiﬁf(@:“)" + psi’ Z (v - b ) (0" + psy Z m'e (63)"’””’ ’] ,
—t]2
(4.16)
(")3 33,030 33 = ('f) Iyn+m—1 a3 = ({T) A{’f)) Iyn+m 2
P = R+ st ¥ om0 +w*gvm+amw>]/
m= m= —-t/2

5. CONSTITUTIVE EQUATIONS

According to the natural state theory, if the response of a body is perfectly elastic and
isotropic, there exists a strain energy X of the form[12-15]

Z=Z(9i, 11, 12,[3), (51)

where coordinates #° (i = 1, 2, 3) are referred to a certain natural state and I, (i = 1, 2, 3)
are the strain invariants defined by

L=y, L=%¥y L=%4yt (5:2)
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The stress—strain relation between the Kirchhoff stress tensor s and the Cauchy-Green
strain tensor y;; are obtained in the form

e
6%‘1,

st (5.3)
which may be attributed to Cosserats. This expression may be rewritten, considering that
the stress and strain tensors are symmetric, as follows:

&)

where

oz oz 1)

C=-—-——, :-—-’ = —.
o TR A

(5.5)
By assuming I to be an analytic function of the strain measures, £ may be expressed as a
power series in three strain invariants /,, I, and I, . Since the existence of a strain energy
function X has been assumed, it follows that

&’z T ac; _ac;

aar, anen, O o a1, 6

Coefficients C;, C, and C; may be expressed as power series in strain invariants. Then
C, can be expressed in the form[16]

)
Cy=+ = CAFAIIAIZFISAa 5.7
ol
where A, I', A =0, 1, 2, ... and summation is intended even in those terms in which an

index appears more than twice. With C; given by (5.7) and using the relations (5.6)

oc;  ocC _
o = or = FCanali*LTT
s0 that
r 1y AL
C; = A+l Cara °L" LAY + Dy LA, (5.8)

where the second term on the right-hand side represents an arbitrary function of inte-
gration. Similarly, with the result (5.8) and using the relations (5.6),
oC, oC, Al

il ol =mCAFAIIA—112r_II3A+1 + AD, 1AL
1 2

so that

A

C:
YTA+T

- A -
Caral* 'L + =1 Dy AL + EL LS, (5.9

where the third term on the right-hand side represents an arbitrary function of integration.
Therefore, A = 1 in the coefficient £, without loss of generality.
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The mixed component of stress tensor (5.4) can now be expressed as follows:

. A _ A _ ‘
st = [A_+—l Cara 'L LA +F~+—]DM11A L +EA1,A] 8L

I _ . )
+ [m Carali*L 1A + DArllAlzr]V} + [CArAllAler:«)A]Y;cV’;- (5.10)

Introducing the expanded strain components (3.5) into equation (5.2), the strain invari-
ants can be expressed as

o (p)

o (p) o (p)
L=Y L@, L=Y LE. =Y 0 (5.11)
p=0 p=0 p=0

where, by using the relations (2.4) and (2.5)

" P—4q (p)
=a z (g + D(* )/1 Yag T V335

g=0
(s) (p—g-—r—s)

7 =Aa”a’”i 55 @+ 00+ DR T

g=0r=0s5=0

(p—q-r) 1 2 @ (-9

p P (r)
ai 1)(b? B _
+a q;o r;) @+ 1)E; 7.3 ¥p3 + 3 q;o Y33 V33 (5.12)

(p (1) W) (p—q—r—s—t—u)

) P P
Jy=1a7da" Yy Y Z Z Z (g + D(r + D(s + DOYENUE); Yoy Voo Vay

q=0r=0s5=0t=0u=0
sy @y (p—q—-r—s—1)

rafany ¥ ¥ Z(q+1)(r+1)(b'1)V(b')‘s 85 ¥ys s

g=0r=0s5=01=0

(s) (p—q—r—s) (@) () (p—4q-r)

" p p P ﬂ(r) 1 » »
+a* Y Y Y @+ DODE a3 ves V33 +3 ZO ZO Y33 Y33 Y33 »
q=0 r=

q=0r=0s=0

where the following relation has been used:

[se)

P Y (p + DO

The powers of the strain invariants can be expressed as

o (p) o (p) o (p)
= Z Kl (Hs)p’ 121": Z Kz(gs)pa 13A= Z K3(03)pa (5-13)
p=0 A p=0 T p=0 A
where
V-1 v V-1 v
A
(p) p 4 t (t S) (q r) (p ) p P P (S) (r) @ (p—q-r—-..—s)
K;= Z Z Z i Jd qu rZ ; i J;

v g=0r=0 s s

(i=1,2,3) (5.14)
This formula indicates that there are V-factors and (V — 1)-summations. From (5.14) the
following relation in the recurrence form may be obtained:

(p) r @ (p—1)

(i=1,2,3) (5.15)
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The product of the powers of the strain invariants can be expressed as

w© (p) o (p)
IALE =Y Q 0%, IALTLA=Y ¥ (6, (5.16)
p=0A,T p=0A,T, A
where
(p) p (@ (p—d) (€] p p (q () (p—q-r)
Q = Z Kl KZ N \P = Z z Kl K2 K3 . (5.17)
AT g=0 A r A,T,A 4=0r=0 A A

Using (5.13), (5.16) and (3.5), the constitutive equations in terms of the stress components
can be obtained from (5.10):

o (p) o (p) o (p)
sP= Y ENEY, st = ) ERE)Y, P =) 2RO, (5.18)
p=0 p=0 p=0
where
(p) i (p—q—r—s)
28 _ i z n (q+ DB + a”a® Z Z Z Hz(r+ D(s + DEEEY, 7
q=0 q=0r=0s=0

(p—q—r—s—t—u)

NN z L+ D6+ 1D+ DEERS v 1o

q=0r=0s5=0t=0

) (p—gq—r—s-t)

S S 3 S M+ Dis+ DEEGE v s

¢q=0r=0s=01=0

(p) rpp (@ (p—aq-r) (5.19)
EX =a" ) Y L0+ DO v

q=0r=0

(t) (p—q-r—s-1)

B v rp p p P (@)
+aa? Y Y Y Y Ty(r+ D(s+ DI 7,8 Va3

q=0r=0s=01=0

(s} (p—q—r—s)

+ a** i Z Z H3 (r+D@)ives 733

q=0r=0s=0
(__p‘)33 (p) p (@) (pr—9) 8 (s) (p~q-r—s)
E¥ =M+ ) M, y:3+a Z Z Z 1'[3(r+1)(b"),1 Va3 783
q=0 g=0r=0s5=0
p P (@ (1) (p—q-r)
+ Z Z My va3 733 -
a=0 50
In (5.19) the following coefficients are used:
(l_pI) A c (p) A D (6) £ (p)
R — + K .
PTA+ ArAA—l,l",A+1 +1 ArA—1,r+1 aal
U= cyn ¥ &
=— b d + D s 5.20
2TA+1 ArAA,l‘—l,A+l ArA,r ( )
(p) (p)
Ha = CAFA b

AT, A
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The constitutive equations in terms of the stress resultants can be obtained by substituting
(5.18) into (4.8) as follows:

(n) o (p)

NP =5 Z%[fn+p+1)—2HE(n+p +2)+ Kf(n + p + 3)],
p=0

(n) o (p)

Q=Y Z3[f(n+p+ 1) — 2HE(n + p + 2) + Kk(n + p + 3)], (5.21)
P=0

(n) o (p)
T=)Y E¥[fn+p+1)—2HI(n+p+2)+ Ki(n + p + 3)],

where the following notation is used:

|| = (3) u - o= (5.22)

—12 2
0, for even n,

nf(n) =
) {t"/Z"'l, for odd n.

The expressions (5.21) are considered to be the general constitutive equations in terms

of stress resultants and strain components for elastic shells of isotropic materials. These
(m)
expressions involve two types of power series in the strain components y;; and the mixed

components of the fundamental tensor of the middle surface b3. In order to examine the
constitutive equations and to introduce various approximations, it is convenient to show

the powers in these expressions. The notation 1/R (R is the least principal radius of curva-
(n)
ture) will be used to represent terms of the type b5 and y to represent terms of the type y;;.

The results can be summarized as Table 1.

Table 1
%) (p) » 2 ® » (» )
Jy g J3 K, K, K, Q g
A r A a,r AT, A
v 1 2 3 A 2T 3A A2 A42T+3A
1
R y4 p 14 p 14 p P P

Since Table 1 shows that the powers of y are independent of those of 1/R, only the
powers of y are considered in the following. In the expressions (5.20), the power to which
y occurs in terms involving the material coefficients C,r,, D, and E,, which are generally
considered to be functions of #', is determined by applying the result of Table 1 to (5.20)
and the result is shown in Table 2.

Table 2
» ) &)
II, I1, 11,
CAl_A DAI' EA CAI‘A DAF CAI"A

0% A+2T+3A+2 A+2I'+1 A A4+2T+3A+1 A+42I' A+4+2T+3A
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Finally, the power to which y occurs in terms involving the material coefficients in the
constitutive equations (5.21) can be found from the result of Table 2 and equations (5.21):

Cara: A +2IT +3A + 2,
Dyr: A4+2IN+ 1, (5.23)
E,: A

In the case of approximate constitutive equations of p-degree, summation is to be exe-

cuted over all the combinations of A, I' and A that are obtained by equating each power
(n) (n) (n)
of (5.23) to p. Denoting the stress resultants of p-degree by N;’f), 0¢, and T, , the approxi-

mate constitutive equations of the kth order may be derived from

(n) 5 k (n) 5 (n) k (n) (n) k (n)

aff __ x, a2 a .
N = Z N(p)’ Q - Z Q(p)’ T = Z T(p)' (5'24)
(k) p=1 (k) p=1 (k) p=1

Explicit expressions of the stress resultants of p-degree in terms of the expanded strain
components are quite complicated and will not be shown here. The power of 1/R in (5.21)
is (p + 2) because of the presence of u which has a second order term in 1/R.

6. CONCLUSION

A rigorous derivation of the complete and consistent two-dimensional shell theory incor-
porating the geometrical and physical nonlinearities has been obtained from the three-
dimensional theory of elasticity.

Based on the expressions of the displacement components (3.4), a fully consistent set
of fundamental shell equations for geometrically nonlinear problems has been derived
systematically through the modified Hellinger~Reissner variational principle without
introducing the Love-Kirchhoff hypothesis. All these expressions are referred to a certain
natural state and given in terms of stress resultants defined by (4.8) and the expanded
Cauchy-Green strain tensors. For elastic shells of isotropic materials, assuming the existence
of a strain energy function Z given by a power series in three strain invariants, the general

constitutive equations in the Cosserats form have been derived as power series which in-
(n)
volve two types of power series in the strain components y;; and the mixed components of

the second fundamental tensor of the middle surface ;. Thus, the theory presented here
can describe the large elastic deformations of shells undergoing finite strains. The classical
shell theories are directly derivable from the present results by proper truncations of the
series.

Although the fundamental equations derived here are very complex in their forms for
practical uses, the following assumptions, i.e.

(1) Love-Kirchhoff hypothesis,
(2) small strains and/or small displacements,
(3) small curvatures and/or small rotations, etc.

which have always been introduced in the classical shell theories, are not included. There-
fore, on the basis of the present results and introducing various assumptions, it will be
possible to estimate the accuracy of the earlier shell theories.
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Abcrpaxt — B paGore paerca obuias HenuHelHas Teopus obonoyex 1is Gonpinux mpornGos
¥ KOHeMHBIX JaeopMaunil, OTHOCUTENBHO HEKOTOPOrO €CTeCTBEHHOro coctosHHs. Ilyrem
Pa3NOXKERNST KOMIOHEHTOB MIEPEMEILIEHHH B CTENEHKbIE PANbI IO kKoopavaaTe §, HopmanbHoi
K HeneOPMHPOBAHHOM CPEIHHHOI HOBEPXHOCTH 0BOI0YEK, PA3JIOKEHHS B PAABI AT TEH30POB
nedopmaunn Koum-I'puHa BhIpaXaloTcs ¢ MOMOIUBIO 3THX Pa3fiOKEHHBIX KOMIIOHEHTOB
nepemetuenuit. [TocpencrsoM npeo6pa3oBaHHOrO BApHALMOHHOIO NpuuuMna Ienmuurepa-
Paiicuepa s TPEXMEpPHOH ynpyroif CIUTOMIHOH CPEIbl, ONMpelNensieTCs CHCTEMa OCHOBHBIX
ypaBHennit 0B0ONKH, B BHIE DA3NOXKEHHbIX B paabl TeHiopos aebopmaunn Koum-I'puna #
cymm nanpsxennit Kupxrodda, He npemnonaraercs runoresy Jlssa-Kupxrodda. TMpunu-
MaOTCHd BO BHUMAHHE PacTsKCHHE BbiClero nopsaxa M usrub. Jns ynpyrax obomouex u3
RIOTPORHOTO MaTepHalia, BLBOAATCA obuiMe HesnHelHbIe ypasHeHHA COCTOAHMS, Tpeanona-
ras, 4To SHeprus aedopMalnn SABAACTCA aHanUTHHeCKOR ¢yHKuuel Mepwi aedopmanmu.
Taxum o6pa3oM, CO3NABACTCH NTOJHAS H COBMECTHA ABYXMEPHAsi TEOPHs 0O0JIOUEK, 3aKToYya-
oWAas TeOMETPHYECKUEe H (QUIMUECKHE HENUHEeHHOCTH. KiacCHyeckMe TeOpHH MOXHO He-
FIOCPEACTBEHHO NOAYMHTh W3 MPSAIOKEHHbIX PE3YIIbTATOB, Iy TEM NPABHIILHOTO OTOpachIBaHHSA
4JICHOB PALOB.



