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Abstract-This paper presents a general nonlinear theory of elastic shells for large deflections
and finite strains in reference to a certain natural state. By expanding the displacement com
ponents into power series in the coordinate (P normal to the undeformed middle surface of
shells, the expansions of the Cauchy-Green strain tensors are expressed in terms of these
expanded displacement components. Through the modified Hellinger-Reissner variational
principle for a three-dimensional elastic continuum, a set of the fundamental shell equations is
derived in terms of the expanded Cauchy-Green strain tensors and Kirchhoff stress resultants.
The Love-Kirchhoff hypothesis is not assumed and higher order stretching and bending are
taken into consideration. For elastic shells of isotropic materials, assuming the strain-energy
to be an analytic function of the strain measures, general nonlinear constitutive equations are
then derived. Thus, a complete and consistent two-dimensional shell theory incorporating the
geometrical and physical nonlinearities is established. The classical theories of shells are directly
derivable from the present results by proper truncations of the series.

1. INTRODUCTION

Although a number of significant contributions have been made in the literature, a complete
nonlinear theory of shells, which enables one to describe the large elastic deformations of
shells undergoing finite strains, is not presently available. A fully consistent two-dimensional
nonlinear theory of shells incorporating the geometrical and physical nonlinearities is
derived here from the three-dimensional theory of elasticity.

In the two-dimensional theory of shells, a great number of investigations have been devel
oped on the basis of the well-known Love-Kirchhoff hypothesis. Under the assumption of
small strains and small displacements, Naghdi[l, 2] has developed a systematic derivation
of the fundamental equations in the linear shell theory. There still remains, however, some
theoretical problems to be solved, especially so far as shells undergoing large deflections
and/or finite strains are concerned. For thin elastic shells undergoing large deflections but
small strains, several theories for the geometrically nonlinear problems have been developed.
By introducing the Euler stress resultant tensors and the bending strain tensor defined by
the difference of the second fundamental tensors of the middle surface in the deformed
and undeformed states, Sanders [3] has developed a nonlinear thin shell theory and shown
that the existing theories can be derived under various approximations. The equations of
equilibrium have been written in the directions of the base vectors of the undeformed middle
surface, but an approximation has been made for the relation between the transverse shear
and bending moment resultants. Koiter[4] has also derived similar results under the assump
tions of small strains and plane state of stresses. However, in these investigations, since the
definitions of stress resultant tensors and also of bending strain tensor have been left
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uncertain from the viewpoint of the three-dimensional theory of elasticity due to the assump
tion of small strains and the constitutive equations have not been examined, it seems that
there exists a certain inconsistency in the order of approximations among the strain-displace
ment relations, the equations of equilibrium, the boundary conditions and the simplest
linear constitutive equations. A consistent approximation of the fundamental shell equa
tions, therefore, seems to be established only if an appropriate set of the constitutive
equations are incorporated simultaneously. In [3,4], the fundamental equations have
been expressed with respect to the undeformed state, but the Euler stress resultants and the
Cauchy-Green strain tensors which do not correspond exactly from the viewpoint of elastic
energy have been made use of due to the assumption of small strains. On the other hand,
with the use of the Lagrange stress tensors, Glockner[5] has derived nonlinear equations
of equilibrium in reference to the known undeformed state under the Love-Kirchhoff
hypothesis. Practical applications of these equations may be limited, because the Lagrange
stress tensors are not symmetric. Under these circumstances it is considered indispensable
to make use of clearly defined stress and strain tensors and to derive a consistent set of
fundamental equations from the viewpoint of elastic energy particularly in the general
shell theory for large deflections and finite strains.

An actual shell body is always three-dimensional and therefore any two-dimensional theory
of shells is necessarily of an approximate character. In order to estimate the order of approxi
mations and to define strains and stress resultants clearly which are introduced in any two
dimensional theory of shells, it seems necessary to derive a shell theory from the three-dimen
sional theory of elasticity. In the linear theory, Koiter[6] has presented a definition of the
stress resultant tensors in his ealier work[4] in terms of the stress tensors and developed a
modified Love-Kirchhoff theory by taking into account the effect of normal strain Y33'

An error estimate of this theory as an approximation to the actual three-dimensional
solution has been derived.

In view of the two-dimensional character of a shell body, it has been natural to consider
an expansion of the three-dimensional equations of the elasticity theory with respect to some
small parameter related, for instance, to the thickness curvature ratio. Within the scope
of the linear shell theory, Rutten[7] has derived two-dimensional interior shell equations by
expanding the components of displacements, stresses and strains into uniformly convergent
Taylor series in the coordinate variable 03 normal to the middle surface, and derived also
the edge-zone equations to analyse the "excess" state in the edge-zone of a shell. For
geometrically nonlinear problems, a set of nonlinear shell equations which incorporates the
linear constitutive equations for anisotropic materials has been derived by Habip[8],
who has clearly introduced the Kirchhoff stress tensors and the Cauchy-Green strain
tensors in the reference state. A theory of thick elastic shells obeying the linear constitutive
equations has been developed by Martinez-Marquez[9] using power series expansions.
In his analysis the Eulerian expressions have been adopted. For thin elastic shells of iso
tropic homogeneous materials, a set of the fundamental equations in terms of the Cauchy
Green strain tensors and the Kirchhoff stress tensors has been proposed by Sumino[lO]
under the Love-Kirchhoff hypothesis. An expression of the displacement vector in the
nonlinear shell theory under this hypothesis has been assumed and, accordingly, the
quadratic terms of the displacement components have been taken into account while their
cubic and higher order terms have been neglected. Using thermodynamic considerations,
the fundamental equations of thick shells of arbitrary materials and for large deflections
have been derived by Kriizig[ll] through the variational principle in the Eulerian descrip-
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tion. It is apparent from these investigations that the most important merit of the three
dimensional approach is that the Love-Kirchhoff hypothesis will no longer be necessary
and that an "exact" shell theory can be derived.

In the most general form of the shell theory for large deflections and finite strains, a
nonlinear stress-strain relation must necessarily be introduced into the set of fundamental
equations. A number of investigations for general constitutive equations of the three
dimensional elastic body have been published[12-15]. In shell theories, corresponding to
the assumption of small strains and small curvature, the simplest linear constitutive equa
tions have always been introduced into geometrically nonlinear problems[3,4]. Within
the assumption of small displacements, nonlinear constitutive equations have been derived
by Wainwright[16] under the Love-Kirchhoff hypothesis and also by Librescu[17] without
this hypothesis. In these two papers, applicabilities of the constitutive equations will be
limited to incompressible materials in which the strain energy function :E is expressed as a
function of two strain invariants 11 and 12 , For shells of incompressible materials under
going large elastic deformations, a theory which admits a prescribed thickness change has
been given by Biricikoglu and Kalnins[18]. This derivation has been made in terms of the
Cauchy-Green strain tensors with the Euler stress resultants and the equations of equi
librium have been written in reference to the directions of the tangents and normal to the
deformed middle surface.

Although the Love-Kirchhoff hypothesis is an effective and powerful assumption to
express the deformed states of plates and shells, quantitative examinations of this hypoth
esis have not been published to date. It is true that an elimination of this hypothesis
results in the complexity of the governing equations. Within the assumption of small dis
placements, Librescu[l7] has derived a physically nonlinear theory without the Love
Kirchhoff hypothesis. This result indicates that it will be an effective technique to expand
the displacement components into power series in e3 even in the geometrically nonlinear
problems under consideration.

In the present paper, a set of fundamental equations is clearly derived in reference to a
known undeformed state (which is considered to be convenient from the viewpoint of
practical applications) in terms of the Cauchy-Green strain tensors and the Kirchhoff stress
tensors. Through the modified Hellinger-Reissner variational principle of the 3-dimensional
elastic body in reference to a natura! state, a set of fundamental equations in geometrically
nonlinear problems is derived without the Love-Kirchhoff hypothesis by expanding the
displacement components into power series in e3 and by including terms representing the
higher order stretching and bending. In this respect, the present result may be regarded as
the Lagrangian formulation corresponding to those in [9, 11], and a generalization of the
result in [8] which is based on the assumption that the displacement components are lin
early varied through the shell thickness and in [10] which is based on the Love-Kirchhoff
hypothesis. The general nonlinear constitutive equations for isotropic elastic materials are
also expanded into power series with respect to the strain tensors and the mixed second
fundamental tensor of the undeformed middle surface. This result may be regarded as a
generalization of that obtained by Librescu[17] in which incompressible materials only
are considered. A difference to choose the Euler or Kirchhoff stress tensor will have an
influence upon this respect, but the difference diminishes in the linear constitutive equations.

By introducing various approximations with respect to geometrical configurations and
deformations of shells and/or material responses, some known approximate theories can
be derived from the present results. Throughout the paper, the usual summation convention
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is used. Repeated Latin indices represent summation over the range (1,2,3) and repeated
Greek indices, over the range (I, 2).

2. PRELIMINARIES FOR SHELLS IN A NATURAL STATE

A shell is defined as a three-dimensional elastic body of volume V, bounded by the upper
(S+) and lower (S-) surfaces which are equidistant from the middle surface S and by a
lateral surface S which is generated by the normal to S along the bounding curve c. The
distance t between S+ and S- is called the thickness of the shell. It is assumed that the
two external bounding surfaces and the middle surface are continuous and sufficiently
smooth, without singularities.

The position of a point on the middle surface of a shell in a natural state may be specified
by a set of curvilinear normal coordinates 0' (i = I, 2, 3), with 03 = °on S. The spacial
position vector may be written in the form:

(2.1)

where ,(oI, 02 ) denotes the position vector of an arbitrary point on the middle surface and
a3(0', 02

), the unit vector normal to the middle surface. The base vector on the middle
surface is given by

and the metric tensors by

A or " ( 2)a" = 00" =: r,,,, IX = I, (2.2)

(2.3)

where bp is the Kronecker symbol. The spacial base vectors and components of the metric
tensors are

{f" = f.1.~a;., {f" = (f.1.-')~a;"

g"P = {f" . {fp = f.1.~ lip a;.V' g"P = {f" . {fP = (f.1.-')HIi-')e a;'·,

{f3 ={f3 =a3 =a3, g33 =g33 =a33 =a33 = I,

g,,3 = g"3 a,,3 = a"3 = 0,

(2.4)

where f.1.p denotes a shifter tensor(l] and is expressed as

f.1.p=~p -03bp, 1i~(Ii-I);=~p. (2.5)

The mixed components of the second fundamental tensor of the middle surface, bp is
defined by

bp bp;.a";', b"p -a3,,,'ap=tl3'a,,,P'

The element of volume, in terms of normal curvilinear coordinates
middle surface S, is given by

dV = Ii d03 dS, dS = J~ dO' d02,

Ii = det(li.n = J~ = 1- 20 3H + (03)2K,

(2.6)

defined for the

(2.7)
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K 1. ~"p b;' bV

= 2 U ;.v " p, (2.8)

Hand K denote, respectively, the mean and Gaussian curvatures and dS is the element
of area on the middle surface. Along the edge boundary, the element of area dS and the
corresponding unit normal n" are related as[l]

n" dS = V,,}1 d83 dc, (2.9)

where v" are components of the outward unit vector normal to the bounding curve c, de
being the line element along this curve.

3. STRAIN-DISPLACEMENT RELATIONS

The displacement vector f) may be expressed in reference to the spacial base vectors as

(3.1)

The Cauchy-Green strain tensor in terms of the displacement components is defined by

(3.2)

where a single vertical line denotes covariant differentiation with respect to 8 i using the
spacial metric tensors gij' gU. In the alternative forms, the displacement vector may be
referred to the surface base vectors as

f) = v'C8 1
, 82

, 83)f1, + v\e1
, 82

, 83)f13
= v"W, 82

, e3)f1" + v3(81
, e2

, e3)f13. (3.3)

The shifted components V" and V3 of the displacement vector can be expressed in power
series expansion by

00 (nJ

V" = Lv,,(e3
)",

n=O

and similarly the strain components by

ro (nJ

v3 = L: v3 (83 )n,
n=O

(3.4)

ro (nJ

Y"p = L y"p«(}3)",
n=O

ro (nJ

Y,3 = L Y"3(e3)",
.=0

(3.5)

Introducing the following relations between space and surface tensors[l],

(3.6)

components of the Cauchy-Green strain tensors can be derived from equations (3.2), (3.4),
(3.5) and (3.6) as follows:
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(n) 1 [ (n":.l) n+ 1 (n-n:! 2) (n:) (n-n:+ 2) (~»)]
1'33 = - 2(n + 1) v3 + L m(n - m + 2) v VA + V3 V3 ,

2 m=O

(3.7)

where a double vertical line denotes covariant differentiation with respect to oa using the
surface metric tensors aap, aap and a comma, partial differentiation with respect to Oi. In
the above derivation, the following relation[l] has been used:

where

00

(/-1-1)'/1 = L (bn)p((nn,
n=O

(3.8)

(bO)p =bp, (b1)p =bp, "', (bn)p =b:(bn-l)~ =b~(bn-l):. (3.9)

Equations (3.7) are considered to be general expressions of the nonlinear strain-displace
ment relations in the three-dimensional shell body corresponding to the expressions of shifted
displacement components (3.4) and the strain components (3.5). The linearized expressions
of equations (3.7) coincide with the results in [17] and these expressions reduce to the results
in [8] by putting n, m = 0, 1.

4. FUNDAMENTAL EQUATIONS DERIVED FROM VARIATIONAL PRINCIPLE

Introducing the Kirchhoff stress tensor sij (which is symmetric, i.e. sii = sji) which does
work on the Cauchy-Green strain tensor 1'ij and the displacement component Vi' the
modified Hellinger-Reissner variational principle for the three-dimensional elastic body in
terms of a natural state may be expressed as[19, 20]

M=O,

where dV denotes the volume element; E(1'ij)' the strain energy function; dS, the element
of area of the external bounding surface; s~ , the prescribed components of the stress vector
on the part Ss, S+ and S-; vi, the prescribed displacements on the part Sv of the
lateral bounding surface of the body. The surface traction Si is given by Si = sjk(e5i + Vi, k)nj ,

where nj denote the components of the outward unit vector normal to the external bounding
surface of the body and bi are the components of the body force.



A general nonlinear theory of elastic shells 267

(4.2)

Using the formulae (2.7)1 and (2.9), and equations (3.4)-(3.6), the terms except the second
in equation (4.1) may be written as follows:

00 (n) (n) (n) (n) (n) (n) )f SiiYii d V = f I NIXP 'IIXP + 2QIX YIX3 + T '133 dS,
v S n=O

Iv tsii(ViU + Vjf i +vk
, i VkU) dV

f
ro [ (n) (n) (n») (n+ 1) (n) (n») (n-1) (n) (n) (n)

= I t NIXP ¢IXP + ¢PIX - t NIXP b; ¢PJ. + b; ¢IXJ. + n QIX VIX - nb~ QIX VJ.
Sn=O

(n) (n) (n-1) (n) 00 ( (n+ m) (n) (m) (n) (m»)

+ QIX l/t1X + n T V3 + I t NIXP ¢J.. IX ¢J.P + l/t1X l/tp
m=O

(n+m-l)(n) (m) (n)(m») (n+m-2)(n)(m) (n)(m»)}]
+m QIX ¢J.. IX VJ.+ l/t1X V3 +tnm T il VJ.+ V3 V3 dS,

00 (n) (n) (n) (n»)
f biv; dV = J. I BIX VIX + B3 V3 dS,
Jv S n=O

00 (n) (n) (n) (n»)f S~Vi dS = f L: S~ VIX + S~ V3 de,
S5 cs n=O

I
00 {(nl (n) (n) ) (n) (n) (n) )}

f i(Vi - vi) dS = L: SIX VIX - v: + S3 V3 - vj de,
Sv cv n=O

00 (n) (n) (n) (n»)

f s~ V; dS = f L: pIX VIX + p3 V3 dS,
s+ +s- S n=O

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

where de is the line element along the boundary curve e, and where cs denotes the part of e
for which the stress vector is prescribed and ev, the part of e for which the displacement
vector is prescribed. In these expressions, the stress resultant tensors and other quantities
are defined as follows:

(n) t/2 (n) t/2
NIXP =f JisIXP(8 3)n d83, QIX = I Jis IX3 (8 3)n d83,

-t/2 -t/2

(n) t/2
T = f J1S33«(}3)" d(}3, (4.8)

-t/2
(n) t/2 (n) t/2
SIX = f JiJi~sJ.(83)n d83, S3 = f Jis 3(83)" d83, (4.9)

-t/2 -t/2
(n) t/2 (n) t/2
~ = f JiJi~bJ.(83)" d83, B3 = f Jib3(83)" d83, (4.10)

-m -m

<;}IX = [JiJi~s~(83)n]t/2, ;}3 = [Jis~(83)n]t/2 , (4.11)
-t/2 -t/2

(n) (n) (n) (n) (n) (n) (n) (n) (n)
lflXP = vIX!lP - blXP v3 , ¢IX. {J = vlX!I{J - bpV3' l/t1X = V3,IX + b; vJ.' (4.12)

(n) (n)

where pIX and p3 correspond to the resultant loads measured per unit area of the middle
surface in a natural state.

Introducing the expressions (4.3)-(4.7) into the variational equation (4.1), the funda
mental equations can be derived:
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the equations of equilibrium,

(n) (n) (n+ I») (n-I) (n) 00 f(n+m) (m) )
fJ up: wP - b~ Nil.). 1111. - n QP + (n - l)b~ Q). + L: l w" <tl." Iia

m=O
(n+rn) (rn) (n+m-l)(m) (n+m-l) (m)

- b~ WI. t/Ja - n Q). tV "+ m Q).II). uP
(n+rn-I)(m) (n+rn-2)(m») (n) (n)

+ m Q). (V" 11m T uP + BP + pP = 0,
(n) (n) (n+ 1») (n) (n-I) 00 ( (n+m) (m)

fJ u3:bap NaP b~ WI. + Qa 11a - n T + L: b; WP</>).p
m=O

(
n+m)(m») (n+m- I)(m) (n+m-l)(m) (n+m-l) (m)

+ Nap t/Jp 1111. - n Qa t/J" + m Qa lla V3 + m Q" t/J"
(n+m-2)(m») (n) (n)

nm T U3 + B3 + p3 = 0;

the boundary conditions along the boundary curve,

(n) [('In) (n+l») co (n+m) (m) (n+m-l)(m»)]
Va or Vp N"P - M Nil.). + L: N"P </>",). + m QP va ,

m=O

(n) [In) 00 (n+m)(m) (n+m.-I)(m»)]
U3 or Vp QP + L: WP t/Ja + m QP u3, ;

m=O

the constitutive equations in terms of the stress components,

(4.13)

(4.14)

,,3 Oks =--
iJ'Va3 '

33 ol:
s =-~-,

(;Y33
(4.15)

and the strain-displacement relations which coincide with the former result (3.7). The
constitutive equations between the Kirchhoff stress resultants and the Cauchy-Green
strain tensors here were left in the unexpanded forms and discussed in detail in the follow
ing section.

The load terms which consist of the boundary terms on the upper and lower surfaces
are also obtained from (4.11) as follows:

(n) [ 00 (m) (m») co (m) ] t/2
pa = JLtl~s~3(83)" + tlS~3 L 0"1Il - b~ 03 (83

)n+m + JLs~3 L: m v"(83
)"+m-l ,

m=O rn=O t/2

(4.16)

5. CONSTITUTIVE EQUATIONS

According to the natural state theory, if the response of a body is perfectly elastic and
isotropic, there exists a strain energy l: of the form[12-15]

where coordinates 8 i (i = 1, 2, 3) are referred to a certain natural state and Ii (i
are the strain invariants defined by

(5.1)

1,2,3)

(5.2)
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(5.3)

The stress-strain relation between the Kirchhoff stress tensor sij and the Cauchy-Green
strain tensor Yij are obtained in the form

.. aL
sl}--

- aYi/

which may be attributed to Cosserats. This expression may be rewritten, considering that
the stress and strain tensors are symmetric, as follows:

(5.4)

where

aL aL aL
C1 = all ' Cz = al

z
' C3 = OJ

3
• (5.5)

By assuming L to be an analytic function of the strain measures, L may be expressed as a
power series in three strain invariants II' I z and 13 , Since the existence of a strain energy
function L has been assumed, it follows that

aZL aZL

ali OJ} = al} ali
or (5.6)

Coefficients CI , Cz and C3 may be expressed as power series in strain invariants. Then
C3 can be expressed in the form[l6]

(5.7)

where ,1, r, A =0, 1, 2, ... and summation is intended even in those terms in which an
index appears more than twice. With C3 given by (5.7) and using the relations (5.6)

aC3 acz 11 f-I A
-=-=rCuA/llz 13 ,
alz 0/3

so that

C r C Il1/f-I/A+I D I l1/ f
Z = -A I1fA I z 3 + I1f 1 Z,+ I

(5.8)

where the second term on the right-hand side represents an arbitrary function of inte
gration. Similarly, with the result (5.8) and using the relations (5.6),

acz = aC I =~ C 1 11 - 11 f-Il A+1 + I'1D I A-II f
all alz A + I UA I Z 3 U I Z ,

so that

where the third term on the right-hand side represents an arbitrary function of integration.
Therefore, 1'1 ~ 1 in the coefficient E I1 without loss of generality.
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The mixed component of stress tensor (5.4) can now be expressed as follows:

i [Ll C /&-I/r/A+l Ll D /&-I/r+l E /&] ,i
Sj = A + 1 &fA I 2 3 + r + 1 &f 1 2 + d 1 Vj

[ r C /d/r-I/A+l D /d/r] i [C /d/r/A] i k+ A + I &fA 1 2 3 + &f I 2 Yj + &fA I 2 3 Yk Yj' (5.10)

Introducing the expanded strain components (3.5) into equation (5.2), the strain invari
ants can be expressed as

00 (p)

/2 = I 1 2 (8 3 y,
p~o

(5.11)

where, by using the relations (2.4) and (2.5)

(p) p (p-q) (p)

1 1 = aaJ. I (q + I)W)~ Yap + Y33,
q~O

(p) p p p (s) (p-q-r-s)

12 = taaYa
Pb I I I (q + I)(r + I)W);(b')~ YPJ. Yav
q~Or~Os~O

(5.12)

(p) p p p p p (t) (u) (p-q-r-s-t-u)

1 3 = taa<1aP'ayq I I I I I (q + I)(r + 1)(s + I)W)~(br);(bs)~ Yav Ypb YJ.y
q~Or~Os~Ot~Ou~O

p p p p (s) (t) (p-q-r-s-r)

+ aP'a
yq I I I I (q + I)(r + I)W);(br)~ Ypb Y y3 Yv3
q~Or~Os~Or~O

p p p (r) (s) (p-q-r-s) 1 p p (q) (r) (p-q-r)

+ aaJ. q~O Jo s~o (q + l)(bq)~ Ya3 Yp3 Y33 + 3q~O r~o Y33 Y33 Y33'

where the following relation has been used:

00

gaP = aaJ. I (p + 1)(bP)~(83y.
p~O

The powers of the strain invariants can be expressed as

00 (p)

/l
d = I Kd8 3 y,

p~O d

(5.13)

where
'1- 1 V '1-1 V...---.... -"- _...---.... --"-----

(p) p q t (s) (I-s) (q-r) (p-q) p p p (s) (r) (q) (p-q-r- . .• -s)

K i = I I ... I J j J j 00' J j J j = I I'" I Jioo' J i J j J j

V q~O r~O s~O q~O r~O s~O

(i=I,2,3) (5.14)

(5.15)(i = 1,2,3)

This formula indicates that there are V-factors and (V - I)-summations. From (5.14) the
following relation in the recurrence form may be obtained:

(p) p (q) (p-q)

K j = I K j 1 j •

V q~O '1-1
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The product of the powers of the strain invariants can be expressed as

271

where

00 (p)

N11/ = L n (lJ
3y,

p=O a, r

00 (p)

1/1/1/ =.L 'P (lJ
3y,

p=Oa,r,A
(5.16)

(p) p (q) (p-q)

n L K I K 2 ,
a,r q=o a r

(p)

'P
a,r,A

p p (q) (r) (p-q-r)

L L KI K2 K3 •
q=O r=O a r A

(5.17)

Using (5.13), (5.16) and (3.5), the constitutive equations in terms of the stress components
can be obtained from (5.10):

where

00 (p)

s'P = L 2.'P(lJ3 y,
p=O

00 (p)

S33 = .L 2.33 (lJ3)p,
p=o

(5.18)

(p) p (p-q) p p p (q) (p-q-r-s)

2.,p = aAP L TIl (q + 1)(bq)~ + aUAa" L .L L TIir + 1)(s + 1)(br)~(bs)~ 'hv
q=O q=Or=Os=O

p p p p p (q) (u) (p-q-r-s-t-u)

+ aUAatVa~b L L L L L TI3 (r + 1)(s + 1)(t + I)W)~W)~W)~ YYA Ybv
q=O r=O s=O t=O u=O

p p p p (q) (I) (p-q-r-s-t)

+ aUAa" L L L L TI 3 (r + l)(s + 1)(br)~(bs)~ 'h3 Yv3
q=Or=Os=Ot=O

(p) p p (q) (p-q-r)

2.'3 =aAP.L L TI 2 (r+ 1)(br)~ Yp3
q=Or=O

p p p p (q) (t) (p-q-r-s-t)

+ aAPa
vb L L L L TI 3 (r + 1)(s + 1)(br)~(bSn Yyp YB

q=Or=Os=Ot=O

p p p (q) (s) (p-q-r-s)

+ aAP L L L TI 3 (r + 1)(b
rHYp3 Y33

q=Or=Os=O

(p) (p) p (q) (p-q) p p p (q) (s) (p-q-r-s)

2.
33 = TIl + L TI2 Y33 + aAP.L I I TI 3 (r + 1)(br)~ Y,3 Yp3

q=O q=Or=Os=O

p p (q) (r) (p-q-r)

+ I L TI 3 Y33 Y33'
q=O r=O

In (5.19) the following coefficients are used:

(p) d (p) d (p) (p)

TI1=--CarA 'P +--Dar n +EaK1 ,
A + 1 a-l,r,A+l r + 1 a-l,r+l a

(p) r (p) (p)

Il 2 = -- CarA 'P + Dar n ,
A+ 1 a,r-l,A+l a,r

(p) (p)

TI3 = CarA 'P
a,r,A

(5.19)

(5.20)
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The constitutive equations in terms of the stress resultants can be obtained by substituting
(5.18) into (4.8) as follows:

for odd n.

for even n,

(n) 00 (p)

N'P = I 3'P [f(n + p + I) - 2Hf(n + p + 2) + Kf(n + p + 3)],
p=o

(nJ 00 (pJ

Q' = I 3,3 [f(n + p + I) - 2Hf(n + p + 2) + Kf(n + p + 3)],
p=o

(nJ 00 (pJ

T = I 3 33 [f(n + p + I) - 2Hf(n + p + 2) + Kf(n + p + 3)],
p=o

where the following notation is used:

l ]t/2 (t)n
(83

)" = - [I - ( - I)n] == nf(n),
-t/2 2

{

O,
nf(n) =

t n/2 n - 1
,

(5.21)

(5.22)

The expressions (5.21) are considered to be the general constitutive equations in terms
of stress resultants and strain components for elastic shells of isotropic materials. These

(nJ

expressions involve two types of power series in the strain components 'Yij and the mixed
components of the fundamental tensor of the middle surface bp. In order to examine the
constitutive equations and to introduce various approximations, it is convenient to show
the powers in these expressions. The notation I/R (R is the least principal radius of curva-

(n)

ture) will be used to represent terms of the type bpand 'Y to represent terms of the type 'Yij'
The results can be summarized as Table 1.

Table I

(p) (p) (p) (p) (p) ,p) (p) ,p)

J I J 2 J 3 KI K 2 K3 0 't'

" r A ". r 4, r,A

y 2 3 ~ 2r 3A ~-"-2r ~ + 2r+ 3A
1
R P P P P P P P P

Since Table I shows that the powers of'Y are independent of those of I/R, only the
powers of'Y are considered in the following. In the expressions (5.20), the power to which
'Y occurs in terms involving the material coefficients CHA , D Hand E A , which are generally
considered to be functions of {)i, is determined by applying the result of Table I to (5.20)
and the result is shown in Table 2.

Table 2

(p) (p) (p)

III Il2 II 3

C"rA D"r E" C"rA D.l.r C.l.rA

Y ~+2r+3A+2 ~+2r+ 1 ~ ~ +2r+ 3A+ 1 ~+2r ~+2r+3A
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(5.23)

Finally, the power to which r occurs in terms involving the material coefficients in the
constitutive equations (5.21) can be found from the result of Table 2 and equations (5.21):

Cu ,,:L1+2f+3A+2,

Du: L1 + 2f + I,

E,.,,: L1.

In the case of approximate constitutive equations of p-degree, summation is to be exe
cuted over all the combinations of L1, f and A that are obtained by equating each power

(n) (n) (n)

of (5.23) to p. Denoting the stress resultants of p-degree by Ncr}), Q(p) and T(p) , the approxi
mate constitutive equations of the kth order may be derived from

(n) k (n)

N'P = '\' N'PL (p)'
(k) p= 1

(n) k (nj

Q' = I Q(p) ,
(k) p= 1

(n) k (n)

T = I T(W
(k) p= 1

(5.24)

Explicit expressions of the stress resultants of p-degree in terms of the expanded strain
components are quite complicated and will not be shown here. The power of I/R in (5.21)
is (p + 2) because of the presence of J1. which has a second order term in 1/R.

6. CONCLUSION

A rigorous derivation of the complete and consistent two-dimensional shell theory incor
porating the geometrical and physical nonlinearities has been obtained from the three
dimensional theory of elasticity.

Based on the expressions of the displacement components (3.4), a fully consistent set
of fundamental shell equations for geometrically nonlinear problems has been derived
systematically through the modified Hellinger-Reissner variational principle without
introducing the Love-Kirchhoff hypothesis. All these expressions are referred to a certain
natural state and given in terms of stress resultants defined by (4.8) and the expanded
Cauchy-Green strain tensors. For elastic shells of isotropic materials, assuming the existence
of a strain energy function I given by a power series in three strain invariants, the general
constitutive equations in the Cosserats form have been derived as power series which in-

(nJ

volve two types of power series in the strain components rij and the mixed components of
the second fundamental tensor of the middle surface bp. Thus, the theory presented here
can describe the large elastic deformations of shells undergoing finite strains. The classical
shell theories are directly derivable from the present results by proper truncations of the
senes.

Although the fundamental equations derived here are very complex in their forms for
practical uses, the following assumptions, i.e.

0) Love-Kirchhoff hypothesis,
(2) small strains and/or small displacements,
(3) small curvatures and/or small rotations, etc.

which have always been introduced in the classical shell theories, are not included. There
fore, on the basis of the present results and introducing various assumptions, it will be
possible to estimate the accuracy of the earlier shell theories.
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AOCTpaKT B pa60Te JlaeTCll 06mall HemlHeHHall Teopllll 060110'leK Jl.l1l1 60.l1bllIflX rrporn50B
H KOHe'lHbIX JleljJopMaUIlH, OTHOCIlTel1bHO HeKOToporo eCTeCTBeHHoro COCTOllHHlI. UYTeM
pa3110lKeHIl1l KOMnOHeHTOB nepeMemeHIlH BCTeneHHble pllnbI no KooptUlHaTe (P, HOPMa.I1bHOH
KHeneljJopMllpoBaHHoH CpeJlIlHHOH nOBepXHOCTIl 060110'leI<, pa3110lKeHilfl BpllJlbI Jll1fl TeH30poB
L\eljJopMallllll KOUlll-rpilHa BblpalKalOTClI C nOMomblO 3TIlX pa3110lKeHHbIX KOMnOHeHTOB
nepeMell\eHIlH. nOCpeL\CTBOM npe06pa30BaHHoro BapHauHoHHoro npHHUllna fel1l1HHrepa
PaHcHepa JlJlll TpexMepHoH ynpyroH Cnl10lllHOH CpeL\bl, onpeL\el1l1eTClI CIlCTeMa OCHOBHhlX
ypaBHeHIlH 060110'lKH, B BIlL\e pa3110lKeHHbiX B paJlbI TeH30pOB Jle$opMallHH KOIllH-fpHHa H
CyMM HanplllKeHIlH KHpxroljJljJa. He npeJlnOllaraeTClI rHnOTe3Y JIlIBa-KHpxroljJljJa. UpHHH
MalOTCll BO BHHMallHe paCTfllKeHHe BblClllero nOplIJlKa 11 H3rH6. nl1ll ynpyrHx 060110'leK 113
H30TpOflHoro MaTepHal1a, BbIBOJlllTClI 06mHe Hel1HHeHHbre ypaBHeHHfl COCTOllHHlI, npeJlflOl1a
rafl, 'ITO 3HeprHll JleljJopMallHH lIBllfleTCfl aHanllTHtleCKOfi ljJyHKuHefi Mepbf JleljJopMallHH.
TaKHM 06pa30M, C03JlaBaeTClI nOllHall 11 COBMeCTHa JlByxMepHall Teopllll o60110'leK, 3aKl1IO'la
IOmafl reOMeTpH'leCKlle H ljJH31l'leCKHe HeI1IlHeHHoCTH. KllaCCH'leCKlle TeopHIl MOlKHO He
nOCpeL\CTBeHHo nOI1Y'lIlTb 113 npeL\110lKeHHblX pe3yl1bTaTOB, nyTeM npaBlll1bHOrO oT6paCbIBaHHll
'llleHOB PllL\OB.


